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Two methods using Voronoi–Dirichlet polyhedra (Voronoi–

Dirichlet partition) or tiles (tiling) based on partitioning space

are compared to investigate cavities and channels in crystal

structures. The tiling method was applied for the first time to

study ion conductivity in 105 ternary, lithium–oxygen-

containing compounds, LiaXbOz, that were recently recog-

nized as fast-ion conductors with the Voronoi–Dirichlet

partition method. The two methods were found to be similar

in predicting the occurrence of ionic conductivity, however,

their conclusions on the dimensionality of conductivity were

different in two cases. It is shown that such a contradiction can

indicate a high anisotropy of conductivity. Both advantages

and restrictions of the methods are discussed with respect to

fast-ion conductors and zeolites.
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1. Introduction

The geometrical analysis of void and channel systems is an

important part of the crystal chemistry of porous substances.

Since the net of voids and channels is dual to the atomic net to

some extent, the methods for studying both the ‘empty’ space

(void space) and the space of atoms in crystals are similar in

many respects; this motivated Blatov & Shevchenko (2003) to

introduce the term ‘dual’ crystal chemistry. Recently, ‘grid’

methods (Thomas, 1991; Adams & Swenson, 2002; Küppers et

al., 2006) as well as the methods based on the Voronoi–

Dirichlet partition of crystal space (Blatov et al., 2006) have

been developed to analyze void space. In the ‘grid’ methods

the voids and channels are modeled by a set of points of a

sufficiently dense grid embedded into the crystal space so that

the distance from every point to the nearest atom is not

smaller than the atom radius. The results of the analysis

depend on the grid pitch and on the chosen system of atomic

radii. The ‘grid’ method is implemented in the program

PLATON (Spek, 2009) and is being applied both to inorganic

and to organic crystals.

When using the Voronoi–Dirichlet partition, the centers of

voids are assumed to be the vertices of Voronoi–Dirichlet

polyhedra, while the channel lines connecting the voids

coincide with the edges of the Voronoi–Dirichlet polyhedra.

This method does not require any system of atomic radii; it has

been realised in the program package TOPOS (Blatov, 2006)

and has been successfully applied to analyze migration paths

in fast-ion conductors. Thus, Anurova et al. (2008) treated all

X-ray investigated ternary and quaternary lithium-containing

inorganic compounds (822 LiaXbOz and 1349 LiaX1bX2cOz,

where X, X1 and X2 are any elements) and determined the

periodicity of channel systems providing the transport of

lithium cations. For all the substances the migration maps

characterizing systems of conducting channels were



constructed and 26 potentially novel fast-ion conductors were

revealed.

Quite recently, Delgado-Friedrichs et al. (2003) proposed

one more method of ‘dual’ crystal chemistry resting upon a

special space partition, tiling. The tiling consists of generalized

polyhedra, tiles, which, unlike Voronoi–Dirichlet polyhedra,

are not necessarily convex and may have nonplanar faces. The

most important type is natural tiling that is unique for the net

and contains information on all the voids and channels in the

crystal structure. Until recently, the tiling applications for

crystals had only been provided for high-symmetry nets

(Delgado-Friedrichs et al., 2003). However, after developing

the appropriate software (Blatov et al., 2007) the natural tilings

were built for all known topological types of zeolites (Atlas of

Zeolite Frameworks1).

The Voronoi–Dirichlet partition method as well as ‘grid’

methods can be called geometrical since they are essentially

based on the space metrics and interatomic distances, while

the tiling method is mainly topological and treats the topolo-

gical properties of the net when searching for cavities and

channels. These methods have never been compared with each

other. In this study the tiling method is applied for the first

time to analyze lithium-cation migration paths in ternary

compounds LiaXbOz, and the conclusions on conductivity are

compared with earlier results by Anurova et al. (2008)

obtained with the Voronoi–Dirichlet partition method. We

will discuss both advantages and restrictions of the methods.

2. Terminology and definitions

In this section we summarize some basic notions which will be

used hereafter. A more detailed list of definitions concerning

the use of atomic nets in crystal chemistry was given by

Delgado-Friedrichs & O’Keeffe (2005).

Net is a special type of infinite graph that is simple (it has no

loops or multiple or directed edges) and connected (any pair of

vertices is connected by a chain of edges); the vertices of the

graph are also called nodes of the net. Embedding of the net is

a distinct way to allocate the nodes in space. In this work,

when exploring voids and channels we always use the

embedding that corresponds to the structure of a given

compound, not the most symmetrical one as has been done

earlier (Blatov et al., 2007, and references therein).

The Voronoi–Dirichlet polyhedron of a node is the convex

polyhedron formed by perpendicular planes passing through

the midpoints of the lines connecting the node with the

neighboring ones. Voronoi–Dirichlet polyhedra of all nodes

produce a normal (face-to-face) Voronoi–Dirichlet partition of

space (Fig. 1). The Voronoi–Dirichlet partition is unique for a

given net embedding. The vertices and edges of Voronoi–

Dirichlet polyhedra correspond to the centers of voids and

channel lines, and form the Voronoi–Dirichlet graph. A

subgraph of the Voronoi–Dirichlet graph corresponds to the

system of voids and channels (migration map) where the

mobile ions (conducting component) migrate. A more detailed

list of terms used in the analysis of the Voronoi–Dirichlet

partition for ionic compounds (including fast-ion conductors)

has been given by Anurova et al. (2008).

Tile is a generalized polyhedron, in which any vertex can be

incident not only to three or more vertices, but also to two

vertices. The faces of the tile are fragments of a minimal

surface confined by a ring of the net edges; the faces have no

common internal points. As Voronoi–Dirichlet polyhedra,

tiles fill the space forming a normal partition, tiling (Fig. 2).

The set of tiling’s vertices and edges forms a net (cf. Voronoi–

Dirichlet graph), and thus the notions of tiling and nets are

closely related. Although any tiling carries the net, the

contrary is not true in general: not all nets admit tiling in even

one of its possible embeddings. On the other hand, while tiling

always carries one (and only one) net, the net can admit many

tilings.

The most important is natural tiling to be defined as follows

(Blatov et al., 2007):

(i) the symmetry of the tiling must coincide with the

symmetry of the net;

(ii) the tile faces are confined only by strong rings, i.e. by

rings which are not the sum of the smaller ones;
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Figure 1
Fragment of Voronoi–Dirichlet partition for the crystal structure of �-Po.

Figure 2
Tiling for the framework of the zeolite RHO.1 http://www.iza-structure.org/databases/.



(iii) all other strong rings of the net have crossings (common

internal points of the corresponding fragments of minimal

surfaces);

(iv) if more than one tiling obeys rules (i)–(iii), the single

tiling has to be constructed as a union of tiles of different

tilings.

As a result, natural tiling is always unique (if the net does

admit a tiling). In general it is a non-trivial task to find natural

tiling, however, there is an algorithm and its implementation

in the program package TOPOS (Blatov et al., 2007) allows the

construction of natural tilings for nets of any complexity.

Currently, the best tool to draw tilings and to compute their

topological parameters is the 3dt program,2 which was used to

prepare all the tiling images in this paper. The tile can be

designated by its face symbol [Aa
�Bb
�Cc . . . ], where the inte-

grals A, B, C, . . . determine the sizes of the tile faces, and a, b,

c, . . . are equal to the number of faces of size A, B, C, . . . .

Tiling as a whole is described by the signature k1[Aa
�Bb
�Cc . . . ]

+ k2[Dd
�Ee
�Ff . . . ] + . . . , where the coefficients k1, k2, . . . ,

show the ratios of tile numbers in the tiling. An important

factor of the tiling topological complexity is the transitivity

pqrs, where integrals p, q, r and s are the numbers of inequi-

valent nodes, edges, tile faces and tiles, respectively. Thus, the

tiling shown in Fig. 2 consists of two types of tiles corre-

sponding to two kinds of cavities in zeolite RHO and having

face symbols [48
�82] (blue tiles) or [412

�68
�86] (yellow tiles). The

tiling signature is 3[48
�82] + [412

�68
�86], i.e. the ratio of tile

numbers is 3:1; the transitivity is 1242. Any tiling has a dual

net, whose nodes and edges correspond to the centers of tiles

and ‘windows’, respectively (Fig. 3).

The following properties of natural tilings determine their

significance for crystal chemistry (Blatov et al., 2007):

(i) Natural tiling contains all the ‘topological’ voids of the

net, i.e. the space domains confined by ‘windows’ (strong rings

of connected atoms), irrespective of the domain shape and

size. For any net embedding, one can decide which voids are

geometrically significant (for instance, which can hold atoms

or molecules of a given size), however, the total set of the

voids is predetermined by the tiling.

(ii) The faces of the natural tiles determine the complete set

of ‘windows’ corresponding to the channels between the voids.

(iii) Natural tilings provide additional ways to classify nets;

topologically equal tiles in the nets to be compared can indi-

cate some structural similarity.

(iv) Exploring the methods of gluing tiles can be useful for

crystal design and to elaborate on strategies to synthesize new

porous materials.

(v) The net that admits the tiling describes the ordered part

of the fast-ion conductor (we will call it framework), while a

subnet of its dual net describes the migration map (Blatov et

al., 2007).

The tiling approach is, to some extent, dual to the Voronoi–

Dirichlet approach. The tiles represent cavities, while the tile

vertices coincide with atoms; in the Voronoi–Dirichlet parti-

tion the relations are opposite: polyhedra embrace atoms,

while their vertices are allocated in the centers of voids.

However, these two approaches are not mirror copies; in

general (and as a rule), the Voronoi–Dirichlet graph is not

isomorphic to the tiling dual net. Moreover, the topology of

the Voronoi–Dirichlet graph strongly depends on the struc-

ture metrics, while tiling and its dual net are mostly deter-

mined by the atomic net topology and are not very sensitive to

the net embedding method. That is why the approaches can

complement each other and can be independently applied in

crystal chemistry.

We emphasize that, in general, cavities and channels

obtained with tiling and Voronoi–Dirichlet partitions differ

from each other in two ways:

(i) Voronoi–Dirichlet cavities are mainly tetrahedral (three-

dimensional simplexes) except in some highly symmetrical

cases, because any vertex in the Voronoi–Dirichlet graph is

equidistant to at least four atoms, while tiles can be topolo-

gically very complicated;

(ii) Voronoi–Dirichlet ‘windows’ are mainly triangular

because any edge in the Voronoi–Dirichlet graph belongs to at

least three Voronoi–Dirichlet polyhedra, while the faces of

natural tiles can have any number of vertices.
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Figure 3
(a) Tiling and (b) dual net (ZA nodes) in the zeolite ACO.2 http://www.gavrog.org.



This is the reason why the dual net of tiling is, in general,

simpler than the Voronoi–Dirichlet graph. However, if we

consider all interatomic contacts (both valence and non-

valence) as the net edges, the tiling becomes simpler

(composed of tetrahedra), and the tiling dual net coincides

with the Voronoi–Dirichlet graph. In this case both approa-

ches give the same migration map.

3. Principles of analysis and their computer
implementation

The algorithm for building and analyzing migration maps for

ions by means of the Voronoi–Dirichlet partition was

described in detail by Anurova et al. (2008) and includes the

following steps:

(i) Constructing Voronoi–Dirichlet polyhedra for all

inequivalent atoms, i.e. forming the Voronoi–Dirichlet parti-

tion of the crystal space. Note that no information on chemical

bonds is required since to build the Voronoi–Dirichlet poly-

hedron only information on atomic coordinates is needed, not

on bonds.

(ii) Determining coordinates for all inequivalent vertices

and edges of the Voronoi–Dirichlet polyhedra and, as a result,

allocating all elementary voids and channels, respectively, as

well as computing their geometrical parameters.

(iii) Retrieving significant elementary voids and channels by

comparing their geometrical parameters with the criteria

specified for the task to be solved.

(iv) Building the migration map, visualizing the system of

voids and channels, allocating the most probable positions of

mobile ions.

Thus, the whole analysis of the void space is automated. An

important point is the choice of criteria for selecting significant

voids and channels. Anurova et al. (2008) screened and proved

these criteria for lithium-conducting oxygen-containing

compounds by analysing their crystal structures.

Below we propose and illustrate the three-step algorithm

for constructing a migration map by the tiling method.

(i) Determining a three-periodic3 net corresponding to the

framework. While the information on the topology of the

atomic net is not important to build the Voronoi–Dirichlet

partition, it is crucial to find the strong rings (tile faces) and

hence to construct the natural tiling. In the case of zeolites,

there is a distinct framework of SiO4 tetrahedra and the net

can be unambiguously chosen (Blatov et al., 2007). Fast-ion

conductors do not necessarily have a three-periodic valence-

bonded framework, but can consist of molecular ions, chains

or layers. Thus, out of 105 ion-conducting ternary LiaXbOz

compounds only 20 have three-periodic nets of valence bonds

(Anurova et al., 2008). For instance, �-LiIO3 has a distinct

three-periodic net of vertex-connected IO6 octahedra (Fig. 4).

If the three-periodic net cannot be built with valence bonds,

the weaker oxygen–oxygen contacts as the net edges should be

considered. The main problem at this stage is that the natural

tiling is unambiguously determined by the net topology,

therefore, treatment of different sets of non-valence interac-

tions gives rise to different tilings.

(ii) Building natural tiling and dual nets for the framework

net according to the rules of Blatov et al. (2007).

Let us analyze how the natural tiling changes when weak

interatomic contacts are added to the initial valence-bonded

net using �-Li2SO4 as an example. If we ignore the bonds with

Li atoms, the structure is composed of isolated SO4 tetrahedra

(Ivanov-Schitz & Murin, 2000). To obtain a three-periodic net

one has to link them by non-valence contacts. We have
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Figure 4
Framework in the �-LiIO3 crystal structure.

Figure 5
The nets in the crystal structure of �-Li2SO4 built with non-valence
contacts (a) R(O—O) � 3.2 Å and (b) R(O—O) � 3.3 Å.

3 In the literature, the term n-periodic is often confused with the term n-
dimensional, but they are quite different. A net can be, say, two-periodic but
three-dimensional etc.; see Delgado-Friedrichs & O’Keeffe (2005) for details.



constructed four nets including the contacts R(O—O) � 3.2,

3.3, 3.4 or 3.5 Å. For all the nets natural tilings and dual nets

were also found.

Let us compare the results obtained for the first [R(O—O)

� 3.2 Å] and second [R(O—O) � 3.3 Å] nets (Fig. 5). The

natural tiling for the first net consists of seven types of tiles; its

signature is 2[4.52] + 8[34] + 2[32
�42] + 2[32

�52] + 2[3.5.72] +

2[3.53
�62] + [42

�74]. One of them embraces the allocation place

of the Li1 atom (the distance between the tile center, ZA, and

the Li1 atom is 0.61 Å, Fig. 6a). The second net admits the

natural tiling 4[4.52] + 10[34] + 8[32
�52] + [32

�56] + [310
�42
�52]

with five types of tiles. Since the number of edges and rings

increases from the first net to the second owing to additional

interatomic contacts, one of the tiles [4.52] of the

first net is split into three parts: new tile [34] and

two fragments [32
�4] belonging to other tiles (Fig.

6b). The distance from the center of the tile [34]

to the Li1 atom is 0.07 Å, i.e. the tile fits the

lithium position much better. A further compli-

cation of the nets with R(O—O) � 3.4 Å and

R(O—O) � 3.5 Å gives rise to an even more

detailed description of voids (Table 1); in fact,

adding new edges to the initial net results in splitting large

cavities into smaller fragments. The channels in the more

complicated net are also more detailed; they are represented

by chains of edges of the corresponding dual net. In fact, this
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Figure 6
(a) Tile [4.52] (violet) and (b) tile [34] (deep violet) built for the nets
shown in Figs. 5(a) and (b), respectively. ZA balls coincide with the tiles
centers.

Table 1
Shortest distances (Å) between Li atoms and nodes (ZA) of dual nets in the crystal
structure of �-Li2SO4.

Shortest distance Li—ZA (Å) in the net with
Li atoms R(O—O) � 3.2 Å R(O—O) � 3.3 Å R(O—O) � 3.4 Å R(O—O) � 3.5 Å

Li1 0.61 0.07 0.07 0.07
Li2 1.49 0.95 0.95 0.13

Figure 7
(a) Three-periodic framework [B3O5]� in the crystal structure of
Li[B3O5]; the helical chain forming the [001] channel is shown in red;
(b) a stacking of tiles that visualizes the channel.



complication breaks the channel lines by adding new nodes to

them; as a result, a crooked channel can be better represented.

If the valence-bonded net is three-periodic, but does not

admit any tiling, the addition of some non-valence contacts

can fix the problem. Thus, the [B3O5]� framework in Li[B3O5]

is three-periodic (Ivanov-Schitz & Murin, 2000), however, the

[001] channels are formed by infinite helical chains of B—O

bonds (Fig. 7a); there are no ‘windows’ (strong rings) in this

direction and, hence, finite cavities (tiles) cannot be separated

in the channels. However, even adding weak O—O interac-

tions with R < 3.0 Å allows the channels to be represented as a

sequence of disk-shaped tiles; the corresponding tiling is

isohedral (it consists of one type of tile, [52.64.132.152], where

13- and 15-rings depict the ‘windows’ inside the channel, Fig.

7b). Let us emphasize that the separation of finite cavities

(tiles) is relative: indeed, there are infinite cavities (channels)

in the structure, and splitting them into finite parts is merely a

method for visualizing. The corresponding dual net represents

the channels as infinite chains of the edges conforming to 13-

and 15-rings of the initial net.

As was mentioned in x2, when we consider all the non-

valence contacts, the results should coincide with the Voronoi–

Dirichlet approach. However, in this case the initial net

becomes highly coordinated, the number of rings increases

sharply, and the procedure of tiling construction becomes

time-consuming and useless.

(iii) Simplifying the dual net by removing those cavities

(nodes) and channels (edges) that cannot provide the trans-

port of lithium cations owing to geometrical restrictions. To

find such channels we have applied the criterion proposed by

Anurova et al. (2008): cavities and channels with radii not

exceeding 1.38 and 1.8 Å, respectively, should be removed.

After removing the nodes and edges according to these

criteria, one should remove the nodes of the dual net, in which

only one edge or no edges meet, since the corresponding voids

cannot participate in migration paths. As a result a subnet of

the dual net has been obtained, and it is the subnet that

describes the migration map. Thus, simplifying the four dual

nets describing the void space in the �-Li2SO4 crystal structure

at different R(O—O) gives rise to three-periodic migration

maps. This conforms to the experimental data and the results

of the Voronoi–Dirichlet partition method (Anurova et al.,

2008), but the system of voids and channels is detailed

differently in the two methods (Figs. 8a–c). In special cases, the

simplified dual net can be split into finite isolated graphs or

may even disappear; this indicates that the ions cannot migrate

in the structure.

Thus, if information on only the periodicity of the migration

map is required, the simplest three-periodic net built with only

valence contacts can be used. If the allocation places of ions

should be determined, the net can be complicated by a

successive accounting of the strongest non-valence contacts.

As another example let us consider the crystal structure of

�-LiIO3 that possesses rather high ionic conductivity (Ivanov-

Schitz & Murin, 2000). The anisotropy of conductivity was

experimentally proved; there are tunnels passing along [001]

(Fig. 9a). The migration map obtained by the Voronoi–

Dirichlet partition method (Anurova et al., 2008) consists of

one-periodic [001] channels, which agrees with the experi-
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Figure 8
(a) The migration map in the crystal structure of �-Li2SO4 obtained with the Voronoi–Dirichlet partition, and the dual nets corresponding to three-
periodic nets of SO4 tetrahedra connected by the links with (b) R(O—O) � 3.2 Å and (c) R(O—O) � 3.5 Å.

Table 2
Three crystal structures of lithium fast-ion conductors for which the
periodicities of the Voronoi–Dirichlet graph and the dual net are
different (for the complete list of 105 studied crystal structures see
supplementary materials).

Periodicity

Compound Voronoi–Dirichlet graph Dual net ICSD collection code

�-LiB3O5 1 3 39106
Li2W2O7 1 2 1897



mental data (Fig. 9b). As was mentioned above, the frame-

work in this structure is formed by IO6 octahedra sharing

vertices, so there is no need to consider non-valence contacts

while constructing the net. The natural tiling [83] + [83
�122]

consists of two types of tiles and, hence the dual net is binodal.

After simplifying the dual net it becomes one-periodic and

corresponds to [001] channels (Fig. 9c).

This algorithm was implemented into the program ADS of

the TOPOS package. Recently, the Voronoi–Dirichlet parti-

tion method was also realised within TOPOS (Anurova et al.,

2008) which allowed us to use both methods and to compare

their results when studying void space in crystals.

4. Analysis of migration maps in ternary compounds
LiaXbOz with the tiling method

As was mentioned above, with the Voronoi–Dirichlet partition

method, Anurova et al. (2008) found 105 crystal structures

containing infinite (one-, two- or three-periodic) migration

maps among 822 ternary LiaXbOz compounds. Below we

compare these results with the migration maps built for the

105 crystal structures using the tiling method to compare the

two approaches. We emphasize that for ‘dense’ structures

where the Voronoi–Dirichlet partition method does not find

cavities available for migrating cations and hence no

conductivity, the tiling method also leads to the same

conclusion. Checking 35 structures randomly chosen from the

822–105 = 717 non-conducting ternary compounds proved this

statement.

Natural tilings were found for 90 crystal structures; for the

structures without a three-periodic valence-bonded net we

added the shortest non-valence O—O contacts until a three-

periodic net was formed. In the remaining 16 cases natural

tilings could not be constructed in a reasonable time; there is a

high probability that these nets have no natural tiling. This

reveals one more disadvantage of the tiling method: some nets

do not admit tilings or have topology which is too complicated

(large transitivity pqrs and/or high coordination). At the same

time, the complexity of the net topology is insignificant in the

Voronoi–Dirichlet partition method.

After simplifying the dual nets for the 90 natural tilings we

found that the periodicity of the migration paths (dimen-

sionality of conductivity) coincides with the results of the

Voronoi–Dirichlet approach in all but two cases; in both

exceptions the dual net has a higher periodicity than the

Voronoi–Dirichlet graph (Table 2). For the crystal structure of

Li2W2O7 the tiling method gives a two-periodic migration map

(100) consisting of distinct one-periodic chains interconnected

by long (7.1 Å) rectangular channels [010] (Fig. 10a) with an

effective radius of 1.91 Å. The Voronoi–Dirichlet partition

method ignores these channels, since it splits each of them into

two triangular elementary channels (Fig. 10b) of a smaller

effective radius (1.69 Å). In this case we can expect a strong

anisotropy of conductivity: even if it is two-dimensional, the

conductivity magnitudes along [010] and [001] should be quite

different. The same situation occurs in �-LiB3O5: one-periodic

channels [001] are interconnected in the tiling dual net by long

(4.5 Å) links that result in a three-dimensional migration map

(Fig. 10c). The links correspond to rectangular channels of

effective radius 1.92 Å, while in the Voronoi–Dirichlet graph

the link is represented by two triangular elementary channels
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Figure 9
�-LiIO3: (a) crystal structure and (b) migration map obtained with the
Voronoi–Dirichlet partition; the vertices of the Voronoi–Dirichlet
polyhedra coincide with lithium cations, the [001] channels are given in
the polyhedral representation (Blatov & Shevchenko, 2003); (c) frame-
work net with tiles [83

�122] (red) and [83] (yellow). The nodes ZA of the
simplified dual net coincide with the centers of the tiles [83

�122] as well as
with Li atoms.



of radii 1.67 and 1.73 Å. Obviously, the conductivity magni-

tude along [001] is expected to be larger than in other direc-

tions. Thus, the tiling method more correctly describes large

polygonal ‘windows’ in the net.

5. Conclusions

Let us summarize the main advantages and restrictions of both

methods in exploring the void space in crystals.

(i) Despite different algorithms, both methods describe the

same void space and, hence, have common features. In parti-

cular, the number of voids obtained with the tiling method is

never larger than obtained with the Voronoi–Dirichlet parti-

tion. The reason is that the large and/or strongly distorted

cavities can be represented by a conglomerate of vertices of

Voronoi–Dirichlet polyhedra, while in the tiling method any

cavity contains a single node of the dual net. At the same time,

the complete coincidence of the migration maps obtained by

both methods occurs only occasionally (we have found seven

such cases in the same group of Li8MO6 compounds, see

supplementary materials4).

(ii) Ordinarily, the tiling method gives a simpler conductive

pattern which is easier to interpret, whereas the Voronoi–

Dirichlet partition is better able to identify the most probable

positions for mobile cations and describes the crooked chan-

nels in more detail. Thus, in �-Li3PO4 the Voronoi–Dirichlet

graph accurately defines the positions of lithium cations and

the paths of their motion, while the dual net only outlines the

channel system (Fig. 11). We have not found conflicting

examples, where one method would predict high conductivity

while the other method would not. The methods occasionally

result in contradictory conclusions regarding the dimension-

ality of conductivity; this can indicate a high anisotropy of
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Figure 10
Fragments of (a) dual net of natural tiling and (b) the Voronoi–Dirichlet graph in the crystal structure of Li2W2O7. Rectangular ‘window’ corresponding
to the [010] channels is shown in red, the lines of one rectangular channel (a) and two triangular channels (b) passing through the ‘window’ are shown in
green. (c) Dual net of natural tiling in the crystal structure of �-LiB3O5. The links between channels [001] are shown as dashed lines, one of the links,
passing through the red rectangular ‘window’, is green; one [001] channel is yellow.

4 Supplementary data for this paper are available from the IUCr electronic
archives (Reference: HW5002). Services for accessing these data are described
at the back of the journal.



conductivity. Such cases require careful experimental verifi-

cation.

(iii) For some complicated nets it is very time-consuming to

find the natural tiling; moreover, some nets do not admit

natural tiling, whereas a Voronoi–Dirichlet partition can be

constructed for the crystal structure of any compound in

reasonable time.

(iv) When dealing with microporous structures that contain

large cavities, such as zeolites, the Voronoi–Dirichlet graph

can contain conglomerates of vertices in the centers of the

cavities. These conglomerates do not have a clear physical

interpretation and require a special procedure for contracting

(Blatov & Shevchenko, 2003), while the tiling method

provides the single node of the dual net for each cavity.

In summary, we would recommend the Voronoi–Dirichlet

partition method for detailed exploration of the void space in

the substances containing the pores of atom size (1–5 Å) and

small, preferably trigonal, windows. The tiling method can be

used for micro- and mesoporous substances as well as for

structures with small pores if a more schematic description is

suitable. If possible, both methods should be used and their

results compared; all contradictions should be carefully

explored.
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Figure 11
�-Li3PO4: (a) migration map obtained with the Voronoi–Dirichlet
partition, and (b) dual net built for the three-periodic net of PO4

tetrahedra connected by the oxygen–oxygen links with R � 3.2 Å.


